108 research outputs found

    Accuracy Comparison of LS and Squared-Range LS for Source Localization

    Full text link

    Uplink Performance of Wideband Massive MIMO With One-Bit ADCs

    Get PDF
    Analog-to-digital converters (ADCs) stand for a significant part of the total power consumption in a massive multiple-input multiple-output (MIMO) base station. One-bit ADCs are one way to reduce power consumption. This paper presents an analysis of the spectral efficiency of single-carrier and orthogonal-frequency-division-multiplexing (OFDM) transmission in massive MIMO systems that use one-bit ADCs. A closed-form achievable rate, i.e., a lower bound on capacity, is derived for a wideband system with a large number of channel taps that employ low-complexity linear channel estimation and symbol detection. Quantization results in two types of error in the symbol detection. The circularly symmetric error becomes Gaussian in massive MIMO and vanishes as the number of antennas grows. The amplitude distortion, which severely degrades the performance of OFDM, is caused by variations between symbol durations in received interference energy. As the number of channel taps grows, the amplitude distortion vanishes and OFDM has the same performance as single-carrier transmission. A main conclusion of this paper is that wideband massive MIMO systems work well with one-bit ADCs. Analog-to-digital converters (ADCs) stand for a significant part of the total power consumption in a massive multiple-input multiple-output (MIMO) base station. One-bit ADCs are one way to reduce power consumption. This paper presents an analysis of the spectral efficiency of single-carrier and orthogonal-frequency-division-multiplexing (OFDM) transmission in massive MIMO systems that use one-bit ADCs. A closed-form achievable rate, i.e., a lower bound on capacity, is derived for a wideband system with a large number of channel taps that employ low-complexity linear channel estimation and symbol detection. Quantization results in two types of error in the symbol detection. The circularly symmetric error becomes Gaussian in massive MIMO and vanishes as the number of antennas grows. The amplitude distortion, which severely degrades the performance of OFDM, is caused by variations between symbol durations in received interference energy. As the number of channel taps grows, the amplitude distortion vanishes and OFDM has the same performance as single-carrier transmission. A main conclusion of this paper is that wideband massive MIMO systems work well with one-bit ADCs.115520Ysciescopu

    Finite-SNR Analysis and Optimization of Decode-and-Forward Relaying Over Slow-Fading Channels

    Full text link

    Complete Characterization of the Pareto Boundary for the MISO Interference Channel

    Full text link

    Methods for Compression of Feedback in Adaptive Multicarrier 4G Schemes

    Get PDF
    In this paper, several algorithms for compressing the feedback of channel quality information are presented and analyzed. These algorithms are developed for a proposed adaptive modulation scheme for future multi-carrier 4G mobile systems. These strategies compress the feedback data and, used together with opportunistic scheduling, drastically reduce the feedback data rate. Thus the adaptive modulation schemes become more suitable and efficient to be implemented in future mobile systems, increasing data throughput and overall system performance.This work has been partly funded by the Spanish government with projects MACAWI (TEC 2005-07477-c02-02), MAMBO2 (CCG06-UC3M-TIC-0698), and European COST Action 289 and is a result of work done within this European actio
    • 

    corecore